SACADA Database Code: 637

Topology: 4³T195-CA

of independent nodes (IN): 3

Transitivity: [3653] Space Group: Pcca Pearson: oP16

Coordination Number (CN): 4

Year: 2023

Data

Name	Pressure, GPa	Density, g/cm³	Gap, eV	Relative energy, eV/atom	Bulk, GPa	Shear, GPa	Vickers, GPa	Refs
4 ³ T195-CA (SACADA #637)		3.386		0.741	365.4	298.8	43.5	SACADA ¹
4³T195-CA								doi: 10.1107/S205252062300255X

Elasticity tensor (kBar)¹

11307.8927	679.5018	568.4438	0.0000	0.0000	-0.0000
679.5018	8050.7549	1544.8876	0.0000	0.0000	-0.0000
568.4438	1544.8876	8113.7977	-0.0000	-0.0000	0.0000
0.0000	0.0000	-0.0000	3866.8628	0.0000	0.0000
0.0000	-0.0000	-0.0000	0.0000	1859.7598	-0.0000
-0.0000	-0.0000	0.0000	0.0000	-0.0000	2026.9786

¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes.

DFT calculations

We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025 \text{ Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å⁻¹ for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt-Reuss-Hill [8] approximation. The Vicker's hardness H $_{\nu}$ has been estimated according to Oganov's model [9].