SACADA Database Code: 361 Topology: 4⁷T22 # of independent nodes (IN): 7 Transitivity: [7(12)(10)6] Space Group: P21/m Pearson: mP14 Coordination Number (CN): 4 Year: 2017 ## **Data** | Name | Pressure,
GPa | Density,
g/cm³ | Gap,
eV | Relative energy, eV/atom | Bulk,
GPa | Shear,
GPa | Vickers,
GPa | Refs | |----------------------------------|------------------|-------------------|------------|--------------------------|--------------|---------------|-----------------|----------------------------------| | 4 ⁷ T22 (SACADA #361) | | 3.419 | | 0.674 | 409.2 | 466.1 | 87.7 | SACADA ¹ | | G12 | | | | | | | | doi: 10.1002/cphc.201700151
ជ | ## Elasticity tensor (kBar)1 | 10238.2592 | 896.3909 | 855.9844 | 0.0000 | 0.0000 | -214.1573 | |------------|------------|------------|-----------|-----------|-----------| | 896.3909 | 10987.8706 | 487.5045 | 0.0000 | 0.0000 | 318.6949 | | 855.9844 | 487.5045 | 11131.1236 | -0.0000 | -0.0000 | -182.6344 | | 0.0000 | 0.0000 | -0.0000 | 4853.5595 | 408.1483 | 0.0000 | | 0.0000 | 0.0000 | -0.0000 | 408.1483 | 4540.8090 | -0.0000 | | -214.1573 | 318.6949 | -182.6344 | 0.0000 | -0.0000 | 3978.3081 | ¹ We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) to calculate the total energy and properties of carbon allotropes. ## **DFT** calculations We apply the density functional theory (DFT) approach by using the Vienna Ab Initio Simulation Package (VASP) package [6] to calculate the total energy of carbon allotropes. The Generalized Gradient Approximation [7] (GGA) for exchange-correlational functional is used everywhere. The energy cutoff set to 600 eV. Fully automatic Γ -centered k-points mesh with a reciprocal-space resolution of $2\pi \times 0.025~\text{Å}^{-1}$ is applied. We used tetrahedron method with Blöchl corrections to perform the k-point integration. The convergence thresholds are set at 10^{-6} eV for energy and 10^{-5} eV Å^{-1} for ionic forces. Polycrystalline elastic moduli — the bulk modulus, the shear modulus, Young's modulus, and the Poisson's ratio ν — have been calculated within the Voigt–Reuss–Hill [8] approximation. The Vicker's hardness H_{ν} has been estimated according to Oganov's model [9].