Li, D., F. Tian, et al. (2014). "Modulated T carbon-like carbon allotropes: an ab initio study." RSC Advances 4(33): 17364-17369.

The structural stability, mechanical properties, and dynamical properties of T carbon-like structures were extensively studied by first-principles calculations using density functional theory. A novel modulated T carbon-like carbon allotrope (T-II carbon) is predicted by means of first principles calculations. This structure has 8 atoms in the unit cell, possesses the Pn[3 with combining macron]m space group, and can be derived by stacking up two T carbons together. T-II carbon is a semiconductor with band gap 0.88 eV and has a higher hardness (27 GPa) than that of T carbon (5.6 GPa). The calculations of ideal strength and the electron localization function indicate that T-II carbon has better ability to resist shear strain than T carbon.

http://dx.doi.org/10.1039/C4RA01962H